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Abstract- A dynamic analysis of an elastic-plastic free-free beam subjected to impact by a projectile
at the mid-span or to triangularly distributed impulsive loading along the span is presented.
Attention is focused on the dynamic behaviour of the beam in the early, transient stage of the
response. Details of the interactions between the plastic flexural wave and the elastic flexural wave
reflected from the free ends are described, which assist in understanding how the elastic effect
modifies the deformation history of a beam and finally leads to a somewhat different configuration
from that based on a rigid-perfectly plastic model. The partitioning of the energy in the deformed
beam is also examined and a rigid-plastic model with a rotational elastic-plastic spring at the mid­
span of the beam is proposed in order to estimate the proportions of elastic energy and plastic
dissipation. To verify the theoretical predictions, a group of high-speed photographs obtained
experimentally for central impact of a free-free beam is presented and compared with the numerical
results on the instantaneous profiles of the beam. Copyright (!,;J 1996 Elsevier Science Ltd.
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width of a beam
Young's modulus
strain hardening modulus
one half of impact mass
depth of beam
second moment of cross-section of a beam
rotary inertia of cross-section per unit length of a beam
kinetic energy of rigid-body motion, i.e. the kinetic energy carried by the mass centre of the beam and
the projectile
elastic constant of a rotational spring
half length of a free-free beam
bending moment
bending moment when unloading starts
maximum elastic bending moment
fully plastic bending moment
defined in eqn (18)
mass per unit length of a beam
concentrated force pulse
distribution load along a beam
shear force
energy ratio, = W"j w;:-ax
time
displacement of the mid-point of a beam
non-dimensional displacement, = UjL
initial velocity of impact mass
velocity of the mass centre
elastic deformation energy which is exchangeable with the "local kinetic energy"
maximum elastic deformation energy that a beam can store
total input energy
plastic dissipation based on elastic-plastic theory
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w; plastic dissipation based on rigid-plastic theory
IV transverse displacement
x. y dimensional coordinates
x" x, distances from the mid-point
Y yield stress
f! mass ratio, = GimL
K curvature
K* curvature when unloading starts
K,. maximum elastic curvature
1:1 rotation angle
l:Ie plastic rotation angle
A terminal position of a travelling hinge
Ie = AiL
r non-dimensional time
( ) 3( )13(1)
( ) 3( )13(r).

I. INTRODUCTION

The dynamic behaviour and failure of free-free beams under intense dynamic loading are
of interest when placed in the context of aerospace engineering applications. The intense
dynamic loading may be produced by impact from a projectile or detonating an explosive.
When such loading acts on a free-free beam, it can undergo gross plastic deformation when
the energy input to the structure significantly exceeds the maximum elastic energy that the
beam can store. However, for a symmetrically loaded free-free beam, the final translational
kinetic energy of its rigid body motion may take up a large portion of the input energy,
and, consequently, reduce greatly the energy dissipated in plastic deformation. Energy
conservation requires that

(1)

where Wo is the total input energy; Kc denotes the kinetic energy of the rigid-body motion,
i.e. the kinetic energy carried by the centre of mass of the beam (and the projectile if there
is one); We denotes the elastic deformation energy which (or a portion of which) is
exchangeable with the "local kinetic energy" that accounts for the difference between the
sum of kinetic energy of all the individual elements and Kc ; and Wp denotes the plastic
dissipation. It is usually supposed that the dynamic failure (i.e. collapse) of the beam is
only caused by the plastic dissipation Wp .

The analysis of the dynamic response ofstructures subjected to intense dynamic loading
is greatly simplified by adopting the rigid, perfectly-plastic idealization which neglects the
elastic deformation of the material. When the input energy is much larger than the maximum
elastic energy a structure can store, the rigid-plastic analysis is found to provide a good
estimate of the overall response of the structure, especially of the permanent deformation.
The dynamic behaviour of rigid-plastic free-free beams under pulse loading was first studied
by Lee and Symonds (1952) who revealed the location of plastic hinges in response to a
varying load pulse. Succeeding works, e.g. Symonds (1953), Symonds and Leth (1954) were
also based on the rigid-plastic idealization.

More recently, Jones and Wierzbicki (1987) conducted a study of dynamic plastic
failure (i.e. collapse) of a free-free beam of uniform or stepped cross-section under a
triangularly distributed impulsive load. They concluded that only 25% of the input energy
is converted into plastic work for an ideal impulse. The remaining 75% of the input energy
results in rigid-body motion. As their theoretical analysis is based on the rigid, perfectly­
plastic idealization for the material, the amount of plastic work is overestimated due to the
neglect of elastic deformation energy. In spite of this, their result is still a quite good
estimation of the energy partitioning in a free-free beam when the impulsive loading has a
sufficient intensity that 25% of the input energy (i.e. the work done by the external loads)
is much larger than the elastic strain energy capacity of the beam.

Unlike examples such as simply supported and clamped beams, for which all of the
input energy is converted only into the elastic deformation energy and plastic dissipation,
a free-free beam may display a very different behaviour regarding energy partitioning. After
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the kinetic energy of rigid body motion is subtracted from the total input energy, the elastic
deformation energy can be much more important than might be expected at first sight,
especially when the input energy (i.e. the work done by the external loads) is not far in
excess of the maximum elastic capacity of the beam. Therefore, more care needs to be taken
when one uses a rigid-plastic model to analyze the dynamic response and plastic collapse
of a free-free beam.

Furthermore, elastic effects in this problem may not only be confined to the equation
of energy conservation; they may also alter the deformation history of the beam and lead
to a distribution of plastic deformation in the deformed beam which is significantly different
from that in a rigid, perfectly-plastic beam. Finite element calculations have been reported
on the elastic-plastic response of beams subjected to impact. By using the ABAQUS code,
Symonds and Fleming (1984) and Reid and Gui (1987) carefully studied the dynamic
behaviour of elastic-plastic cantilever beams subjected to tip impact by a projectile and
found that in the early transient phase of the response, the interaction between the main
plastic bending wave and the elastic bending wave reflected from the clamped end makes
the dynamic response of the beam more complex. As a result of this interaction, a high
curvature region (or a "kink") is formed in the interior of the beam, which was observed
in a previous test (see Hall et at. (1971)) but which cannot be predicted by rigid-plastic
approaches.

An analysis of the dynamic behaviour of an elastic-plastic free-free beam subjected to
impact at mid-span by a projectile (Fig 1(a)) or to triangularly distributed impulsive loading
(Fig 1(b)) is presented in this paper, with the help of a numerical solution of the governing
equations based on a small deflection formulation. Emphasis is placed on the transient
behaviour of the beam after impact and the final partitioning of the plastic dissipation, the
elastic deformation energy and the kinetic energy of rigid-body motion for the deformed
beam. As an example, a set of numerical results corresponding to a free-free beam whose
response was observed experimentally is given and compared with the experimental data
on the instantaneous profiles of the beam and the terminal positions of the plastic defor­
mation in the beams.
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Fig. I. A free-free beam subjected to dynamic loading: (a) impact at the mid-span by a projectile;
(b) triangularly distributed impulsive loading; (c) internal forces acting on an element.
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2. ELASTIC-PLASTIC ANALYSIS

2.1. Equations ofmotion
A typical element of the beam is shown in Fig. 1(C) with the x and y axes being in the

axial and transverse directions, respectively. The internal forces acting on the element are
the lateral shear force Q and the bending moment M. If the external force acting on the
element, pet, x), is in the transverse direction only, and the deflection remains small in
comparison with the length of the beam, the equations of motion of the element are

oQ .. ( )
~~~ +mw = p x, t ,
ox

aM ow
a;-Q =Jax'

(2)

(3)

where w is the transverse deflection, m and J are the mass and rotary inertia of the beam
per unit length, respectively. Eliminating shear force Q from eqns (2) and (3) gives

(4)

It is evident that eqn (4) is applicable to beams with arbitrary material properties,
provided their cross-sections remain unchanged during the flexural deformation and the
deflections are small. The rotary inertia of a cross-section of the beam is included here in
order to model more precisely the propagation of the elastic flexural wave.

2.2. Constitutive relations
The free-free beam is assumed to have uniform rectangular cross-section and to be

made of an elastic-perfectly plastic material. Thus, the constitutive relations between bend­
ing moment M and curvature K ( = aw2

/ ax 2 in the case of small deflections) can be written
in the form of (see Fig. 2) :

M

Mp
-------------

c

K

Fig. 2. The bending moment--eurvature relationship of a beam made of an elastic, perfectly-plastic
material.
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Ke < K, L1K > 0,
(5a)

where Me = Ybh 2/6 is the maximum elastic bending moment for a beam of rectangular
cross-section; Ke = MelEI = 2YIEh is the maximum elastic curvature; 1= bh3112 with b
and h being the width and depth of the cross-section; E and Yare the Young's modulus
and yield stress of the material, respectively; and L1K is the increment of K in the time
interval L1t.

Equation (5a) is valid only for loading states (L1K > 0). If L1K < °after K > K" elastic
unloading or reversed yielding will take place and the M-K relation follows the curve ABC
shown in Fig. 2, which is based on the elastic-perfectly plastic property of the material.
Thus, in the case of unloading and reversed yielding, i.e. for L1K < 0, the moment-curvature
relationship is given by

M=

M*-EI(K*-K),

K~ -K*,

(5b)

where K*( > Ke) and M* (> Me) are the curvature and bending moment, respectively, of the
cross-section at the instant when unloading starts.

2.3. Governing equations and discretization
The equation of motion, eqn (4), together with the constitutive eqn (5) forms a closed

set of non-linear partial differential equations with floating boundaries between various
regions, e.g. between elastic and plastic regions, and plastic loading and unloading regions.
It is difficult, if not impossible, to obtain an analytical solution for this floating boundary­
value problem in a finite beam. Therefore, numerical techniques are applied which are more
convenient and capable of predicting the entire dynamic response of a beam from the early
wave motion to the final deformation.

Equations (4) and (5) can be rewritten in finite difference form. In the case of projectile
impact, we assume that the projectile adheres to the beam during the dynamic response of
the beam and no shearing takes place due to impact. If the beam is divided into elements
of length L1xh then for an element at the ith position, and the equations of motion when
p = °are recast as

JWi+] -[2J+m(L1x,)2]~1i;+J~v'_1 = M i+! -2Mi +Mi _J, (i = 2, ... ,n) (6)

JlV2 -[J+GL1x] +m(L1x])2]w] = M 2-MJ, (i = 1)

where G is one halfof the projectile's mass striking at the mid-span of the beam; J = mh 2 /12
and m are the rotary inertia and the mass, respectively, of the beam per unit length.

The constitutive relation is written as

(7a)

during loading (L1K, ;;:::: 0), and
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M~-EI(K~-KJ, K~-2Ke < Ki < K~;

Me[ - ~ - ~ (:;Y +4(K~~KJ} -K~ < K, < K~-2Ke;
(7b)

during unloading and reversed yielding (L1K i < 0). In eqn (7b), K~ and M~ denote the
curvature and bending moment, respectively, of the element at the ith position at the instant
when unloading starts at this element.

In all cases, the curvature of the ith element is related to the transverse displacement by

Wi+! -2wi+Wi_ 1
K,=

(8)

Solving these equations provides the instantaneous values of accelerations Wi at instant
tj, thus for the next instant tj+! = t}+ L1t, the displacement wi.}+! in the finite difference
notation is given by

(9)

Accordingly, at instant tj + [, the curvature K iJ+ 1 at the ith position is calculated by eqn (8),
and M i ,}+ 1 is then calculated by making use of eqn (7),

2.4. Computational procedure
The computational procedure is summarized as comprising the following steps when

quantities Wi,j and Mi,j are known for all the points in the beam at time tj :

(i) solving algebraic linear eqn (6), calculate acceleration Wi,j at instant tj ;
(ii) using eqn (9), calculate displacement wi .}+ 1 at instant tj +! = t+ L1t;
(iii) using eqns (8) and (7), calculate values of K"j+ 1 and Mi,j+ 1 at instant t}+ I,

This cycle of computation then continues, step by step, so that all of the quantities in
the response process at any time are obtained until the end of the response,

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Example 1: a free-free beam subjected to impact at mid-span
For a free-free beam subjected to impact at its mid-span, the deformation of the beam

is symmetric about the mid-point x = 0, refer to Fig. I (a) ; thus, only the right half of the
beam with 0 < x < L is considered in the following analysis. The symmetry conditions at
x = 0 and the boundary conditions at x = L are

Q = 0, dw/dx = 0, at x = 0,

Q = 0, M = 0, at x = L. (10)

The parameters selected for one half of a free-free beam in this example are similar to those
used in work by Symonds (1953) and Symonds and Fleming (1984) for a cantilever beam,
namely:

half-length of beam
width of beam
depth of beam
mass per unit length of beam
rotary inertia per unit length of beam

L = 355.6 mm;
b = 16.3 mm;
h = 4.5 mm;
m = 0.5758 kg/m;
J = 0.972 X 10-6 kg m;
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half of impact mass G = 0.336 kg;
initial velocity of impact mass Vo = 12.9 m/s;
Young's modulus E = 206.9 GN/m2

;

yield stress Y = 200.0 MN/m2
;

fully plastic bending moment M p = 16.5 Nm;
number of elements in one half of the beam = 28, i.e. Llx = 12.7 mm.
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The transient behaviour of the beam. The bending moment diagrams along the right
half of the beam at various instants during the response are plotted in Fig. 3(a-d), from
which the early response of the beam can be divided into four phases.
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Fig. 3. Bending moment diagrams at various instants, showing flexural wave motion. (Continued
overleaf)
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Fig. 3. Continued.
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Phase 1. Elastic-plastic flexural wave (Fig. 3(a)). Immediately after impact, the effect
of the propagation of the flexural wave is similar to that described by Reid and Gui (1987)
for a cantilever beam at an early stage. The moment diagram is oscillatory in nature and
the dispersion of the flexural wave is evident in the increase in the number of oscillations
in the wave packet as the higher frequency components move out ahead of the main
disturbance. There is a maximum bending moment close to M p at instant t = 0.266 ms.
Compared with the rigid-plastic analysis in the transient phase, the propagation of the
maximum bending moment reported here corresponds to the travelling hinge, while the
reverse maximum bending moment at the mid-span corresponds to a stationary hinge. For
convenience, the terms "travelling hinge" and "stationary hinge" will be used in the
following for these features.
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Phase 2. First appearance of moving back and forth of the travelling hinge (Fig. 3(b)).
The front of the elastic flexural wave reflects at the free end, propagates in the direction
opposite to the travelling hinge, and then encounters it at a certain time. The interference
between the two waves leads to a re-distribution of the bending moment along the beam.
The travelling hinge may retain its maximum bending moment at a magnitude close to M p

or suffer a degree of unloading. This depends upon the difference in the phases of the
reflected elastic wave and the front of the plastic wave at the point of encounter. Conse­
quently, the travelling hinge presents a feature that looks as if it moves back and forth.
This happens in the time interval from 0.6 to 1.0 ms, and the hinge position is about 0.15
m (about 2/5 of the half length) away from the mid-span. This is different from the case of
a cantilever beam (see Reid and Gui (1987)) in which the position is about half the length
of the beam.

Phase 3. Second appearance of moving back and forth of travelling hinge (Fig. 3(c)).
Over the time interval from 1.0 ms to 1.15 ms, the maximum bending moment is small in
magnitude compared with the full plastic bending moment, whilst the travelling hinge seems
to vanish as evident in Fig. 3(c). It reappears when the bending moment rises to M p again
at 1.437 ms. As the free-free beam requires the bending moment to be zero at x = L, the
travelling hinge can never reach the free end of the beam. It is found that the travelling
hinge again moves back and forth until t = 1.9 ms. The position is around 0.23 m (~0.65L)

away from the mid-span.
Phase 4. Rotation about the stationary static plastic hinge at the mid-span (Fig. 3(d)).

Approximately starting from 2.0 ms, the travelling hinge completely vanishes and only a
negative stationary hinge at the mid-span exists in the beam as shown in Fig. 3(d). The two
halves of the beam rotate with respect to each other about this hinge at the mid-span. This
corresponds to the modal phase in the rigid-plastic analysis; but in elastic-plastic analysis,
the reverse stationary hinge undergoes an expanding-and-shrinking period from 4.9 ms to
6.0 ms. As a result, a negative curvature is formed in the neighbourhood of the mid-span.
Finally, when the plastic dissipation is complete at the stationary hinge, the whole beam
continues to move as a rigid body and a residual elastic vibration remains.

It should be noted that the mass centre of the beam always retains its uniform velocity,
V" in all the phases described above. From the conservation of momentum it is found that

(12)

Consequently, the kinetic energy of rigid-body motion, i.e. the kinetic energy carried by the
mass centre of the beam and the projectile, is given by

(13)

which is obviously a constant for this example.

Distribution ofcurvature. The instantaneous distributions of curvature in the beam are
depicted in Fig. 4. The mid-span takes the highest value of curvature in the entire response
process. Related to phases 2 and 3 described in the previous section, two other peak values
of curvature in the interior of the beam appear (at x = O.4L and x = 0.65L), predicted by
the present elastic-plastic model.

The final distribution of the curvature based on a rigid, perfectly-plastic model (see
Appendix I) and that based on the present elastic-plastic model are both shown in Fig. 4.
It should be noted that the final distributions of curvature in the beam (especially in the
middle segment, say, x < 0.2L) predicted by these two models have very different features.
The rigid-plastic model predicts positive curvature along the whole beam with no peak
appearing in the interior of the beam, except at the mid-span which is a singular point at
which an infinite negative curvature occurs. The discontinuous change from the negative
infinite curvature to a positive one at the mid-span is attributed to the discontinuity of the
initial velocity distribution at the mid-span and the subsequent pair of plastic hinges
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Fig. 4. Evolution of the distribution of curvature.

travelling apart from that point. (If a force of finite magnitude is applied instead of a
suddenly imposed velocity at the mid-span, rigid segments of zero curvature will appear
which separate the regions of positive curvature from the mid-span, see Lee and Symonds
(1952).) In contrast, the elastic-plastic model predicts a region of negative curvature in the
middle segment which includes the mid-span where K = - 42.1 m -1. This finite length
region of negative curvature is present in the experimental observations as will be seen in
Section 5.

Terminal position of the travelling hinge. In the rigid-plastic analysis of a free-free beam
subjected to impact at its mid-span, the deformation mechanism of the beam in the transient
stage consists of a stationary plastic hinge at the mid-span and two travelling hinges moving
away from it, see Appendix I. When the travelling hinges cease to move and vanish, the
transient stage ends and then each half of the beam rotates about the stationary hinge as a
rigid body. The terminal position of the travelling hinge, A, is found to satisfy a cubic
equation as (see Appendix 1 for the derivation) :

..1 3 -4..1 2 -2(413-1)-'.+413 = 0, (14)

where ..1= AjL and 13 = GjmL. Hence, in particular,

(i) A = 0.586L, when 13 ---> 0 (for light mass impact) ;
(ii) A = 0.50L, when 13 ---> CD (for heavy mass impact), and
(iii) A = 0.508L, when 13 = 1.64 (for example 1 in the present paper).

It is evident that for any value of 13 = GjmL the terminal position of the travelling
hinge lies between 0.5L and 0.586L according to the rigid-plastic theory. For the elastic­
plastic analysis presented here, the travelling hinge vanishes at the end of phase 2. Estimated
from Fig. 5, the terminal position is about 0.61L while the experimental data gives approxi­
mately 0.62L for GjmL = 6. According to the calculation based on the elastic-plastic
analysis, the terminal position of the travelling hinge is insensitive to the mass ratio GjmL.
This is in accord with that based on the rigid-plastic analysis.
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Fig. 5. Evolution of the plastic region in a beam subjected to impact at its mid-span.

Instantaneous profiles of beam. Figures 6(a) and (b) depict the instantaneous profiles
of the deformed beam obtained from the elastic-plastic analysis and rigid-plastic analysis.
The time instants are selected so as to correspond to the end of each phase. The instan­
taneous flying shapes of the beam based on the elastic-plastic prediction agree well with
those obtained by high-speed photography as described in Section 5 below. The rigid­
plastic model gives quite a good prediction of the deflection at the impact point (x = 0) in
comparison with elastic-plastic analysis.

Energy partitioning. In order to obtain a quantitative evaluation of the elastic effect,
an energy ratio R is introduced that is defined by

(15)

where Wo = GV6/2 is the initial kinetic energy, and W;'ox is the maximum elastic defor­
mation energy which can be stored in the beam. The plastic dissipation, Wp , is calculated
from

Wp = I (f' M,K;!lX;dt-M1Ct)AX/2EI), K; > 0,
/~ 1 Jo

(16)

while the final kinetic energy of the rigid-body motion, K" is obtained by eqn (13).
According to eqn (I), therefore, the elastic deformation energy in the final residual vibration
stage is estimated by

(17)

Figure 7 displays how the partitioning of the total input energy varies with the energy
ratio R in the case where G/mL = 1.64. A large amount (about 62%) of the input energy
is converted into the kinetic energy of rigid-body motion. When R --> 00, approximately
38% of the input energy is dissipated plastically. If R = 2, however, the portion reduces to
21 % and the remaining 17% of the input energy is converted into the elastic deformation
energy.



2670

(a)

0.28

T. X. Yu et at.

0.56
x/L

0.84 1.0
0.04 ~---~~---~----~--

\.\.
0 0.266 ms

0.03 "\ . 1.000 ms----.

5 '\. v 1.900 ms

~ \"" . 3.321 ms
0

0.02 r'" '\,.:.;:J
('.J

. '" \""~ "v",'H '",OJ
Q "v", "-,,-0.01

"v",

"""""'"" ""
0.00

"'-,."'-,.

"'-,."'-,.

-0.01
"'-,."'-,.

0.0 0.1 0.2 m 0.3 Free end
Impact point

(b)
x/L

0.28 0.56 0.84 1.00.05

0.04

0.3 free end

(m)
0.20.1

0.00

0.03 ~
. "'",

0.02 k """" a 0.266 ms
I ""v", """" • 1. 0 0 m s
,.'" "'-,. v 1.90 ms

0.01 """", "'-."'-,. • 3.321 ms
~ "'-,."'-,.

"'-,."'-,.

"'-,."'-,.

-0.01
0.0

Impact point

Fig. 6. Instantaneous profiles of a beam subjected to impact at its mid-span, predicted by (a) the
elastic-plastic model and (b) the rigid-plastic model.

3.2. Example 2: afree-free beam subjected to a triangular impulsive loading
When a free-free beam is subjected to a triangular impulsive loading, as shown in Fig.

I (b), the initial flexural wave propagation and subsequent interaction with the plastic front
in the transient stage are somewhat similar to those in Example 1. According to the rigid­
plastic analysis given by Jones and Wierzbicki (1987), the valid deformation mechanism
which provides a complete solution contains only a single-stationary plastic hinge at the
mid-span. The present elastic-plastic analysis, however, demonstrates that a plastic front,
like a travelling hinge, propagates during the response of the beam. The evolution of the
plastic region in the beam for this case is depicted in Fig. 8.
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Fig. 7. Energy partitioning for a beam subjected to impact at its mid-span.

Instead of fully discussing the detailed behaviour of the beam in the transient stage,
we focus our attention on the partitioning of the input energy, which is given in Fig. 9.
The difference between the elastic-plastic and rigid-plastic analyses is attributed to the
contribution of the elastic deformation energy that can occupy a fraction of the same order
as that of plastic dissipation when R < 6 and there is a small regime of 0 < R < 1.25 in
which no plastic dissipation is produced at all.

Influence of slenderness ratio L/h. In order to understand the influence of the ratio of
the length to the depth of the beam on the energy partitioning, another case in which the

x/L
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........... T T ....
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Fig. 8. Evolution of the plastic region in a beam subjected to triangularly distributed impulsive
loading.
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Fig. 9. Energy partitioning for a beam subjected to triangularly distributed impulsive loading.

response of a beam of half length, L, equal to 45 mm (slenderness ratio L/h = 10) under
otherwise identical conditions is calculated. The result, which is depicted as the chain line
in Fig. 9, indicates that the portion of the plastic dissipation is larger than that of the
previous case of L/h = 79 (h = 4.5 mm) for the same value of R. On the other hand, since
the kinetic energy of final rigid-body motion remains a constant fraction of 75% of the
input energy regardless of the slenderness ratio of the beam, in the case ofsmaller slenderness
ratios the elastic deformation energy occupies a smaller proportion. For the example of
L/h = 10, according to Fig. 9, the elastic deformation energy is less than 5% of the
input energy when R > 6. This indicates that the rigid-plastic theory provides a better
approximation for short beams than for slender beams.

The "error" of the rigid-plastic model. Further comparison between the elastic-plastic
and rigid-plastic model can be performed by introducing two parameters, viz.
(W;- W;)/W; and w;/w;ax where W; denotes the plastic work resulting from the rigid­
plastic model and W; = Wp defined in eqn (16) is obtained from the elastic-plastic analysis
and is regarded as the "actual" value. Hence, parameter (W; - W;)/W; represents the
"error" introduced by making the rigid-plastic idealization. On the other hand, the ratio
of the plastic dissipation to the maximum elastic deformation energy which can be stored
in the beam, w;/w;ax, serves as an index of the relative insignificance of elasticity in the
problem. Figure 10 depicts the correlation between these two parameters (the "error" of
the rigid-plastic analysis and the energy index) for a free-free beam subjected to impact at
the mid-span or to a triangular loading. It is shown that with the increase of w;/w;ax, the
relative discrepancies between W; and W; tend to zero, which implies that the neglect of
elasticity become more reasonable. When w;/w;ax is less than 2, however, the error caused
by the rigid-plastic model becomes so large that ignoring elastic effect is unacceptable.

4. A SIMPLIFIED ELASTIC-PLASTIC MODEL

In order to further understand the contribution of the elastic effect, a simple structural
model is constructed. The model consists of two halves of a rigid, perfectly-plastic free
beam connected by an elastic-plastic rotational spring at the mid-span. This kind of model
was previously studied by Wang and Yu (1991) for the dynamic behaviour of a cantilever
beam. Similar to Example 2 illustrated above, assume that at the initial instant, a triangular
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Fig. 10. The "error" of the rigid-plastic model in the plastic dissipation compared with the elastic­
plastic model.

impulsive loading is applied and results in a triangular initial velocity distribution along
the beam, as shown in Fig. II. The behaviour of the spring is assumed to be described by

elastic or unloading;

otherwise,
(18)

where k is the elastic constant, 8p is the plastic rotation angle, and Me is the maximum elastic
bending moment of the beam. The elastic constant, k, of the spring can be approximately
determined by an energy equivalence. For a beam with flexural rigidity EI and length L,
the maximum elastic deformation energy which can be stored in the beam is
w;ax = M; Lj2EI, while the maximum elastic deformation energy of the spring is M; 12k.
The equivalence of these two gives

k = EIIL. (19)

More details of the formulation of the model are given in Appendix II. The various portions
of the energy are

Fig. II. A simplified beam-spring model.
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The energy ratio R is defined by eqn (15) as before.
The ratios of various portions of energy to total input energy are also shown in Fig.

9, in which the dashed line represents the boundary between the elastic and plastic portions
of the energy based on the beam-spring model. There is a minimum value of R = 4, below
which no plastic dissipation occurs in the beam; in other words, when R ::::; 4, the total
input energy is only converted into kinetic energy of rigid-body motion and the elastic
deformation energy. This obviously underestimates the contribution of the plastic dis­
sipation to the deformed beam. On the other hand, the rigid-plastic analysis given by Jones
and Wierzbicki (1987) evidently overestimates the contribution of the plastic dissipation,
which is also shown in Fig. 9.

5. COMPARISON WITH EXPERIMENTS

The theoretically predicted behaviour of a free-free beam subjected to impact by a
projectile at the mid-span, based on the elastic-plastic analysis, can be compared with
results obtained from high-speed photographs of experiments conducted by one of the
authors (CDA). In one of these tests a free-free mild steel beam was struck by a sledge of
mass (2G = 525 g), which was large compared with the mass of the beam ({3 = G/mL = 6),
travelling at an initial speed of 15 m/s. The annealed mild steel beam had a rectangular
cross-section; its thickness, width and length were 3.18 mm, 12.7 mm and 279.4 mm,
respectively. The stress-strain curve for the material of the beam is given in Fig. 12(a) and
the measured values for yield stress, Young's modulus and strain hardening modulus were
Y = 207.5 MN/m2

, E = 199.0 GN/m2 and Ef! = 570 MN/m2
, respectively.

The test was photographed using a high speed Imacon camera operating at a fixed
framing rate of 10,000 f/s. The aim was to examine the kinematics of the deformation of
the beam and gain some insight into the instantaneous profiles of the beam in the transient
phase.

In the corresponding calculation, all parameters of the load and the beam are chosen
the same as those in the test, while the stress-strain curve of the real material shown in Fig.

Ca)
300

o

(b)

10 50

E

6

Fig. 12. The stress-strain relation for annealed mild-steel specimens: (a) the experimental curve;
(b) a bi-linear model.
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OAms 0.9ms lAms 1.9ms

0.3ms 0.8ms 1.3ms 1.8ms

0.2ms 0.7ms 1.2ms 1.7ms

O.lms 0.6ms 1.lms 1.6ms

O.Oms 0.5ms 1.Oms

(10,000 fls)
Fig. 14. A group of high-speed photographs of a mild steel beam struck by a projectile of mass
525 g travelling at 15 m/s. Triggering the Imacon camera at different times before and after the

impact enables a complete picture of the deformation process to be assembled.
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Fig. 13. Instantaneous profiles of the beam predicted by the elastic-plastic model.

12(a) is approximated by a bi-Iinear relation shown in Fig. 12(b), with Y, E, and Ep being
specified above. The theoretical predictions of the instantaneous profiles of the free-free
beam due to an initial velocity 15 m/s are plotted in Fig. 13(a) and (b). As a comparison,
a set of high-speed photographs taken from a series of tests on such beams is reproduced
in Fig. 14. By comparing typical instantaneous profiles (e.g. those at t = 0.1 ms and 0.3 ms,
i.e. for early times and the simpler modes at later times) shown in Figs 13 and 14, it can be
seen that the present theoretical predictions of the instantaneous profiles have captured the
main features of the experimental observations.

6. CONCLUSIONS

(1) The dynamic behaviour of a free-free beam subjected to impact by a projectile at
the mid-span or to triangular impulsive loading has been studied based on an elastic-plastic
constitutive relation and a relevant numerical procedure. The numerical results when
compared with the instant profiles experimentally obtained from high-speed photographs,
show good agreement.
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(2) The interference between the plastic flexural wave and the elastic flexural wave
reflected at the free-end plays a major role in determining the deformed profile of a free­
free beam under intense dynamic loading. As the plastic dissipation mainly appears in the
early phases of the response, the final irreversible deformation of a free-free beam is
dominated by that gained in the transient stage.

(3) The total input energy (or the work done by the external load) to the beam is
converted into three portions, i.e. the kinetic energy of rigid-body motion, the plastic
dissipation and the elastic deformation energy. The rigid, perfectly-plastic approach over­
estimates the contribution of the plastic dissipation in the beam, while a simple beam-spring
model tends to underestimate this contribution. This overestimate/underestimate may lead
to an incorrect prediction of plastic collapse of the structure. Especially, in the case of
relatively small R, only an elastic-plastic analysis such as that presented in this paper can
provide a more precise prediction on the plastic dissipation and the possible failure of the
dynamically loaded free-free beams.
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APPENDIX I

Rigid-plastic analysis/or afree-free beam subjected to impact by a travelling mass at the mid-span cross-section
When a rigid-plastic free-free beam is subjected to transverse impact at its mid-point by a rigid mass 2G

moving at initial speed V"' the response of the beam consists of two phases. In the first phase, 0 ~ t ~ t 1, a
stationary plastic hinge forms at the impact point (i.e. the mid-point of the beam), and two travelling plastic
hinges move outwards from that point until their travelling velocities become zero. In the second phase, t I < t ~ t2­

the stationary hinge still exists while the two travelling hinges vanish and each half of the beam rotates about the
stationary hinge as a rigid-body until the angular velocity is equal to zero.

Phase I: 0 ~ t ~ t I' Figure A.I shows the velocity diagram of the left half of the beam. The travelling hinge
H is distance A(I) away from the stationary hinge A. The upward velocity of the point at distance XI from A in
section AH is

YI = O-xJI, (AI)

where U denotes the transverse displacement of the mid-point. The upward velocity of the point at distance X2

from A in section HB is

Yo = 0-A8-(x,-A)4;.

Thus, the accelerations of these two points are

(A2)

B A

Fig. AI. Velocity diagram in phase I.
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(A3)

By taking the momentum and moment of momentum of sections AH and HB, the governing equations are
found to be

f
L

0= A my, dx,

(A4)

Substitution of (A3) into (A4) gives

.. mB1\.'
(G+mi\.)U- ~2- = 0,

(
V !I.e)

2Mp = mi\.
2 2 - 3 '

V+i\.(<p-e)+i\.(¢-B) = ¢(\+!I.),

m¢(L-i\.)3
M p = 12

After introducing the following non-dimensional quantities

u = U/L, ). = i\.jL, P = G/mL, n = d( )/dr, r = t(mL3/Mp )-I!',

eqns (AS) can be rewritten in their non-dimensional forms as

. . ... ... ... (I+A)
u+A(¢-B)+).(¢-B) = 4> -2- ,

¢(I_A)3
--12~= I,

and it follows that

-12
u= A(A+4P) ,

e= _-_24_(_A+--CP--,)
).3(A+4P) ,

. 12
¢=--.

(I-A)'

(AS)

(A6)

(A7)

(A8)

(A9)

The terminal position of the travelling hinge is determined by putting 1 = 0 (or ~-e = 0), and note that u, eand
~ are expressed in terms of ).. Substituting eqns (A7)-(A9) into the third equation of (A6) leads to
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U
I------~

y

Fig. A2. Velocity diagram in phase 2.

i 3 -4i2 -2(4fJ-I)Jc+4fJ = O. (AID)

Phase 2: t, < t ~ t,. The velocity diagram is as shown in Fig. A2. A point in the beam at distance x away
from stationary hinge A has the velocity

y=U-xG. (All)

Making use of the momentum and moment of momentum equations for segment BH, the non-dimensional
governing equations are found to be

-6
U = I +4fJ

-12(1 + fJ)
Ii = I +4fJ

The solutions are given by

in which subscript I pertains to the value at the end of phase I.

APPENDIX II

(A 12)

(Al3)

Energy partitioning ala simplified beam-spring model
Refering to Fig. II, consider the left half of the beam. When the beam is subjected to a triangular impulsive

loading with maximum velocity Vo at the mid-point (see Fig. I(b», the initial momentum and input energy are

_iL Voxm _ mLVo
So - --dx - 2

o L

_iL
~ (XVo)' . _ mV~LWo - 2 L m d.\ - 6 '

(]

(AI4)

(AI5)

respectively. The velocity of the mass centre of the beam is constant and can be obtained by the conservation of
momentum. Thus,

v, = V"j2.

Hence, the kinetic energy of the rigid body motion is

and the maximum elastic deformation energy for the beam-spring model is

According to the conservation of energy, the plastic dissipation is found to be

(AI6)

(AI?)

(AI8)

(AI9)


